Replication Complications

An initiative to replicate key findings in cancer biology yields a preliminary conclusion: it’s difficult.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, JUN SIETAFive papers published in eLife this week (January 19) provide the first results of the Reproducibility Project: Cancer Biology—a collaborative effort between the Center for Open Science (COS) and Science Exchange that aims to independently replicate experiments from high-profile cancer biology papers. The results reveal that, for an array of technical and other reasons, reproducing published results is challenging.

“This is an extremely important effort. Even though the published results pertain to only a small set of the larger project, the picture is convincing that reproducibility in cancer biology is very difficult to achieve,” said Stanford University School of Medicine’s John Ioannidis, who was not involved with the project. “I see the results not in a negative way . . . but as a reality check and as an opportunity to move in the right direction, which means more transparency, more openness, more detailed documentation of [methodology], and more honesty with ourselves.”

Researchers launched the Reproducibility Project: Cancer Biology in 2013 with a goal of independently replicating a subset of experiments from 50 of the most impactful cancer biology papers published between 2010 and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide