A Self-Contained COVID-19 Test with 3-D Printed Parts

The makers of the CRISPR-based testing platform, called miSHERLOCK, say it could enable people at home or physicians in resource-limited environments to detect SARS-CoV-2—and eventually, other pathogens.

Written byAnnie Melchor
| 7 min read
photograph of miSHERLOCK devices against a white background

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: The miSHERLOCK device glows brightly if a saliva sample contains SARS-CoV-2 RNA.
WYSS INSTITUTE AT HARVARD UNIVERSITY

Since the start of the COVID-19 pandemic, researchers have been striving to develop low-cost tests to detect the presence of SARS-CoV-2 in patient samples. Now, a team of researchers based at Harvard University’s Wyss Institute and MIT have unveiled a quick and inexpensive testing platform capable of distinguishing between major SARS-CoV-2 variants, according to a paper published Friday (August 6) in Science Advances.

The platform, called miSHERLOCK (pronounced “my-sherlock”), is fully self-contained from sample preparation to test readout. It requires no external equipment or instruments, and is eventually meant to be constructed by the user from 3-D printable parts and battery-powered electronics. The team was led by biomedical engineer James Collins, who is also cofounder and director of Sherlock Biosciences, a firm built around the CRISPR-based diagnostic tool called SHERLOCK which the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white photograph of stephanie melchor

    Stephanie "Annie" Melchor got her PhD from the University of Virginia in 2020, studying how the immune response to the parasite Toxoplasma gondii leads to muscle wasting and tissue scarring in mice. While she is still an ardent immunology fangirl, she left the bench to become a science writer and received her master’s degree in science communication from the University of California, Santa Cruz, in 2021. You can check out more of her work here.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies