Researchers Discover 10 New Immune Systems in Bacteria

The findings more than double the number of known defense mechanisms, piquing the interests of molecular biology tool developers.

Written byJim Daley
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Phi3T bacteriophages attacking Bacillus subtilisROTEM SOREK

Bacteria have been defending themselves from phages—viruses that attack bacterial cells—for billions of years, and unlocking the immune mechanisms they use to protect themselves has led to the development of powerful molecular biology tools such as restriction enzymes and CRISPR-Cas9. Now, researchers report in Science today (January 25) that they have discovered 10 more immune systems that bacteria use to protect themselves against phages and plasmids, opening up the possibility to add new tools to the molecular biology toolbox.

“[The researchers] have more than doubled the systems that we knew of that are involved in phage defense,” says Lori Burrows, a professor of biochemistry at McMaster University, Ontario, who was not involved in the study. “It’s quite a feat of bioinformatics.”

Bacteria have many sophisticated ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo