Researchers Visualize Heart From 380-Million-Year-Old Fish

A team of researchers in Australia have imaged fossilized soft organs of early jawed vertebrates for the first time, finding that our ancient fish ancestors’ hearts, livers, and stomachs are strikingly similar to ours.

Written byNatalia Mesa, PhD
| 4 min read
Drawing of fish along with internal organs
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Three hundred and eighty million years ago, the Gogo Lagerstätte was one of the first coral reefs. Now, this massive outcrop lies in the middle of the Australian desert. Its limestone crags border an expanse of black, silty soil, which contains immaculately preserved fossils from the Devonian period.

Since 1940, researchers have collected fossils of ancient fish hidden inside the rocks scattered throughout Gogo. A few decades ago, they made a surprising discovery: The oxygen-poor environment of the ancient oceans not only preserved the bones of early vertebrates, it also preserved their soft tissue and organs. And in a paper published in Science today (September 15), scientists in Australia report that they have, for the first time, visualized the soft organs inside multiple specimens of our early jawed ancestors. To their surprise, they found striking similarities between the internal body plan of these ancient vertebrates and modern-day animals, including humans.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research