Researchers Visualize Heart From 380-Million-Year-Old Fish

A team of researchers in Australia have imaged fossilized soft organs of early jawed vertebrates for the first time, finding that our ancient fish ancestors’ hearts, livers, and stomachs are strikingly similar to ours.

Written byNatalia Mesa, PhD
| 4 min read
Drawing of fish along with internal organs
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Three hundred and eighty million years ago, the Gogo Lagerstätte was one of the first coral reefs. Now, this massive outcrop lies in the middle of the Australian desert. Its limestone crags border an expanse of black, silty soil, which contains immaculately preserved fossils from the Devonian period.

Since 1940, researchers have collected fossils of ancient fish hidden inside the rocks scattered throughout Gogo. A few decades ago, they made a surprising discovery: The oxygen-poor environment of the ancient oceans not only preserved the bones of early vertebrates, it also preserved their soft tissue and organs. And in a paper published in Science today (September 15), scientists in Australia report that they have, for the first time, visualized the soft organs inside multiple specimens of our early jawed ancestors. To their surprise, they found striking similarities between the internal body plan of these ancient vertebrates and modern-day animals, including humans.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo