Rethinking Telomeres

Not only do telomeres protect the ends of chromosomes, they also modulate gene expression over cells’ lifetimes.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

REGULATORY ROLE: Early in life, when telomeres (red) are long, chromosome looping brings them into contact with particular genes (green) (1). As cells age, their telomeres shorten. Through mechanisms that are not yet understood, this alters chromosome looping and telomeres’ interactions with genes, leading to age-related changes in gene expression (2). Imaging using 3D-FISH (right panels) illustrates the distance between a certain gene and long (top) and short (bottom) telomeres.ILLUSTRATION © STEVE GRAEPEL; IMAGES COURTESY OF JERRY SHAY

The paper
J.D. Robin et al., “Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances,” Genes Dev, 28:2464-76, 2014.

Telomeres are DNA repeats at the ends of chromosomes that protect genetic material from degradation. Because DNA polymerase cannot fully replicate the ends of chromosomes, telomeres shorten each time a cell divides. Telomeres also prevent the ends of chromosomes from fusing to one another by recruiting protective protein caps.

New work led by Jerry W. Shay and Woodring Wright of the University of Texas Southwestern Medical Center in Dallas demonstrates that telomeres are more than just buffer zones. The team found that as chromosomes fold within the nucleus, telomeres come into contact with faraway genes and alter their expression. As telomeres shorten, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo