Robotic Orthotics Aid Gait in Kids with Cerebral Palsy

The wearable technology, akin to motorized leg braces, help children with physical disabilities extend their knees as they walk.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FUNCTIONAL & APPLIED BIOMECHANICS SECTION, REHABILITATION MEDICINE DEPARTMENT, NATIONAL INSTITUTES OF HEALTH CLINICAL CENTERWearable robotic “exoskeletons” improved the gait of children with cerebral palsy, scientists report in a small study published yesterday (August 23) in Science Translational Medicine.

The bespoke orthotics, custom-fitted to the children’s legs, helped extend the kids’ knees properly while they walked and corrected their crouched postures from a tendency to over-flex their knees. The devices improved knee extension in six of the seven children assessed, with effects “similar to or greater than those reported from invasive surgical interventions,” the researchers write in their report.

“It may be useful for some of those kids, but more severe kids may not benefit,” Bruce Dobkin, director of the Neurological Rehabilitation and Research Program at the University of California, Los Angeles, tells STAT. He was not involved in the work.

In the trial, seven children ages five to 19 went through four practice sessions, each a couple of hours long, over the course ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide