Robotic Patch Clamping Gains Eyes

Two groups of scientists combined automation with two-photon microscopy to target and record specific neurons in living animals.

Written byDiana Kwon
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two new in vivo robotic systems use two-photon microscopy to home in on specific brain cells.ISTOCKPatch clamping, a method that allows scientists to study the electrical activity of single cells, is one of the oldest tools in the neuroscience toolbox. Although the technique was originally developed around the late 1970s to study neurons in a dish, over the last few decades, scientists have adapted it to examine the electrophysiology of the brains of live animals. Then, they managed to automate the process—letting a robot explore the brain and attach to a neuron to record.

In a pair of papers published today (August 30) in Neuron, two groups of scientists advanced automated patch clamping even further, independently developing in vivo robotic systems that use two-photon microscopy to home in on specific cells, rather than just the easiest to find.

“This whole-cell patch method is really the gold standard for looking at synaptic and other events that make a neuron compute,” says Ed Boyden, a bioengineer at MIT. “We’re trying to take this art form and turn it into something that’s fully automated.”

In the early 2000s, a group led by Troy Margrie, a neuroscientist at University College London, and his colleagues pioneered a method called two-photon targeted patching (TPTP) that allowed scientists to record from specific neurons in a living ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella