With gene editing—and in particular, the CRISPR/Cas9 system—scientists are in some sense building a shiny new car at the same time they are taking it for a spin. And it’s been a joyride. CRISPR/Cas9, as it was originally conceived for gene editing in late 2012, makes cuts at specific locations along DNA with help from a short stretch of guide RNA that takes the Cas9 endonuclease to a specific site.
Increasingly, groups are applying this technology in large-scale genetic screens—for example, to identify mutations that drive treatment resistance in cancer, or to rapidly assess drug targets. RNA interference doesn’t come close to what CRISPR/Cas9 can do for genetic screens, both in specificity and in efficiency.
At the same time, researchers such as Traver Hart of ...