Screening with CRISPR

Ever-improving CRISPR-based tools are already ripe for large-scale genetic screens.

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

With gene editing—and in particular, the CRISPR/Cas9 system—scientists are in some sense building a shiny new car at the same time they are taking it for a spin. And it’s been a joyride. CRISPR/Cas9, as it was originally conceived for gene editing in late 2012, makes cuts at specific locations along DNA with help from a short stretch of guide RNA that takes the Cas9 endonuclease to a specific site.

Increasingly, groups are applying this technology in large-scale genetic screens—for example, to identify mutations that drive treatment resistance in cancer, or to rapidly assess drug targets. RNA interference doesn’t come close to what CRISPR/Cas9 can do for genetic screens, both in specificity and in efficiency.

At the same time, researchers such as Traver Hart of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems