Set It and Forget It

A tour of three systems for automating cell culture

Written byCarina Storrs
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

FREEDOM EVO: Tecan’s automated cell culture machine is useful for many routine processes and can be upgraded for use with culture flasks and cell suspensions. COURTESY OF TECAN GROUP LTD.Letting a robotic system do your cell culturing can pay off in more ways than just sparing you carpal tunnel. If you have to produce a large number of cells for high-throughput cell-based assays, it can free up hours of time, depending on how many people in your lab do manual cell culture. “If each person in your group has more than two or three cell types to culture, or if you have to feed [or replace the media on] cells frequently, especially on weekends, you should look into automation,” says Robin Felder of the University of Virginia School of Medicine in Charlottesville, cofounder of Global Cell Solutions, a company that sells cell-culture products.

Automating cell culture can also make cell growth more consistent because steps like mixing and pipetting are more tightly controlled, says Rob Thomas of Loughborough University in the U.K. This is important for researchers such as Thomas whowant to produce stem cells for clinical applications.

A fully automated system can handle all the tasks involved in culturing adherent cells, which grow by attaching to the bottom of a cell culture vessel. These tasks include feeding the cells, replacing old growth media with fresh media, and passing the cells. The most delicate of the common tasks, passing, requires detaching a confluent cell layer from the vessel, using an enzyme that breaks up the cells’ attachment proteins. The now suspended cells are then easily transferred into a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies