Sewage Sampling Robots Speed SARS-CoV-2 Detection

An automated wastewater monitoring technique could enable researchers to predict outbreaks of the virus up to a week in advance.

ruth williams
| 3 min read
liquid-containing tube labeled Laboratory Test Wastewater Sample SARS-CoV-2

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, DIGICOMPHOTO

As well as shedding SARS-CoV-2 virus through nose and throat secretions, infected people can, even when asymptomatic, excrete the virus in their stool. Because of this, wastewater sampling has been under investigation since the beginning of the pandemic as a way to monitor levels of the novel coronavirus in whole populations.

Accumulating evidence suggests that such analyses can detect spikes in case numbers earlier than diagnostic testing can, and may therefore lead to swifter implementation of public health measures. However, methods for detecting SARS-CoV-2 in wastewater are slow and laborious, says microbiologist Smruthi Karthikeyan, a postdoc in the laboratory of computational microbiologist and engineer Rob Knight at the University of California, San Diego. Karthikeyan had been performing such analyses on a small scale, using traditional filtration to concentrate the viral RNA from wastewater samples. But when her university announced, early in the pandemic, that it would ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

May 2021

Animal Hybrids

Mating between different species may drive evolution

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo