Short, Strong Signals

Methylation increases both the activity and instability of the signaling protein Notch.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Notch1WIKIMEDIA, HANNES ROSTCellular signals transmitted via the protein Notch are critical for an array of developmental processes in animals. But, if poorly regulated, these signals can contribute to pathologies such as cancer. A report published in Science Signaling yesterday (March 24) reveals that part of the mechanism regulating Notch is the addition of methyl groups that boost the protein’s activity—and hasten its demise.

“While other post-translational modifications have been found in the Notch intracellular domain before, this is a new type of modification, and the biological effects are intriguing,” geneticist Urban Lendahl of the Karolinska Institute in Sweden, who was not involved in the work, wrote in an e-mail to The Scientist.

“[The modification] both leads to the degradation of Notch, but it is also very important for activation. It has an enigmatic role,” agreed geneticist Rhett Kovall of the University of Cincinnati, who also did not participate in the study.

Notch proteins are a family of transmembrane receptors conserved across the animal kingdom that are essential for normal embryonic and postnatal development. Notch is also essential for ongoing differentiation processes in adults, such as the continuous formation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide