Skin-to-Liver Cell Shortcut

Researchers use an adapted reprogramming technique to generate hepatocytes for the repopulation of an injured mouse liver.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human fibroblast-derived hepatocytesMILAD REZVANIScientists have differentiated human induced pluripotent stem cells (iPSCs) into hepatocytes in a dish, but faced challenges using these cells therapeutically. Most iPSC-derived liver cells do not adequately proliferate after transplantation or function exactly like adult hepatocytes do. Now, researchers from the University of California, San Francisco (UCSF), have differentiated human hepatocytes with a modified technique that bypasses pluripotency, and used these cells to repopulate a mouse liver. Their work was published in Nature today (February 23).

“I really like this paper. It’s a step forward in the field,” said Alejandro Soto-Gutiérrez, an assistant professor of pathology from the University of Pittsburgh, who was not involved in the work. “The concept is reprogramming, but with a shortcut, which is really cool.”

The team isolated human fibroblasts and transduced them with retroviruses expressing three stemness factors: OCT4, SOX2, and KLF4. The researchers grew the transduced cells in the presence of growth factors and small molecules to encourage reprogramming into endoderm. “We divert the cells on their path to pluripotency,” explained coauthor Holger Willenbring, an associate professor of surgery at UCSF. “We still take advantage of what is intrinsic to reprogramming, that the cells are becoming very plastic; they’ve become flexible in what kind ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution