Software-Based Chemical Screen Could Minimize Animal Testing

Researchers develop a machine-learning tool for toxicity analyses that is more consistent in predicting chemical hazards than assays on animals.

Written byAnna Azvolinsky
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Worldwide, millions of animals are used for toxicity testing of compounds intended for human and environmental use. Now, toxicologists have developed software that can accurately predict the outcomes of these assays.

The researchers compiled information from public databases including PubChem and the US National Toxicology Program on 10 million chemical structures and existing chemical safety data to develop an algorithm that was at least as reliable than animal testing itself. The tool was 87 percent accurate in predicting animal testing results, while repeating the animal tests was only, on average, on-target 81 percent of the time. The results were published this week (July 11) in Toxicological Sciences.

“There is no doubt that this is an innovative approach,” Fiona Sewell, a program manager in toxicology and regulatory sciences at the National Centre for Replacement, Refinement, and Reduction of Animal in Research in the U.K. who was not involved in the work, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies