Speak, RNA

A trip through the transcriptome

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Charles Perou views scanned gene-expression microarray images with LIsa Cary and Katherine Hoadley in his lab at the University of North Carolina at Chapel Hill.UNC LINEBERGER COMPREHENSIVE CANCER CENTER

If you want to know what a cell, tissue, or organism is doing, molecularly speaking, you don’t look at its genome; you’ve got to look further downstream.

One option: the transcriptome. One step beyond the genome, a transcriptome represents the sum total of RNAs expressed in a cell (or tissue, or organ, or organism) under a given set of conditions. If the genome is a set of instructions for all the proteins and regulatory molecules an organism can produce, the transcriptome indicates which ones it actually produces. And these days, collecting such data is almost trivial.

Generated by using either gene-expression microarrays or “next-generation” DNA sequencing (an application called “RNA-Seq”), transcriptome data can be used to pinpoint genes whose expression levels rise or fall in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo