Spike Protein Deletions Linked to COVID-19 Surges: Preprint

Researchers find that surges in COVID-19 case numbers are associated with deletions in the SARS-CoV-2 genome in an antigenic site of the spike protein. Some of these mutations are present in vaccine breakthrough infections or reinfections.

alejandra manjarrez
| 4 min read
an illustration of the sars-cov-2 spike protein in purple tethered to the viral membrane in dark gray

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, DESIGN CELLS

The genomic stability of SARS-CoV-2 that scientists had first expected has been disrupted by the emergence of different variants over the course of the COVID-19 pandemic. The N-terminal domain (NTD) of the virus’s spike protein has appeared as a potentially mutable structure—scientists have reported it has deletion-prone regions that may allow the virus to escape antibody neutralization. According to a preprint posted to medRxiv June 12, the prevalence of these deletions increased during surges of COVID-19 cases worldwide. The study’s authors also report the presence of NTD deletions in SARS-CoV-2 samples from COVID-19 patients who had either been infected before or who were already fully vaccinated.

The team hypothesizes these deletions could assist the virus in evading immunity, potentially playing a role in surges and vaccine breakthrough infections. The ideas in this manuscript are thought-provoking, says virologist Kevin McCarthy of the University of Pittsburgh who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio