Spike Protein Deletions Linked to COVID-19 Surges: Preprint

Researchers find that surges in COVID-19 case numbers are associated with deletions in the SARS-CoV-2 genome in an antigenic site of the spike protein. Some of these mutations are present in vaccine breakthrough infections or reinfections.

Written byAlejandra Manjarrez, PhD
| 4 min read
an illustration of the sars-cov-2 spike protein in purple tethered to the viral membrane in dark gray

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, DESIGN CELLS

The genomic stability of SARS-CoV-2 that scientists had first expected has been disrupted by the emergence of different variants over the course of the COVID-19 pandemic. The N-terminal domain (NTD) of the virus’s spike protein has appeared as a potentially mutable structure—scientists have reported it has deletion-prone regions that may allow the virus to escape antibody neutralization. According to a preprint posted to medRxiv June 12, the prevalence of these deletions increased during surges of COVID-19 cases worldwide. The study’s authors also report the presence of NTD deletions in SARS-CoV-2 samples from COVID-19 patients who had either been infected before or who were already fully vaccinated.

The team hypothesizes these deletions could assist the virus in evading immunity, potentially playing a role in surges and vaccine breakthrough infections. The ideas in this manuscript are thought-provoking, says virologist Kevin McCarthy of the University of Pittsburgh who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH