Spike Structure Gives Insight into SARS-CoV-2 Evolution

Researchers demonstrate that the SARS-CoV-2 spike protein is more stable and binds the human ACE2 receptor with much higher affinity than the spike protein of its closest known relative, bat coronavirus RaTG13.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Two models of the SARS-CoV-2 spike protein show the closed receptor binding domain (tan, left) and the open receptor binding domain (tan, right).
ADAPTED FROM A VIDEO BY DONALD BENTON

It’s clear that SARS-CoV-2, the coronavirus behind the COVID-19 pandemic, is most closely related to a group of viruses that usually infect bats. But exactly how and where it evolved to become such an efficient respiratory pathogen remains to be seen. Now, in a study published July 9 in Nature Structural & Molecular Biology, researchers have determined that the spike proteins of SARS-CoV-2 and of the closely related bat coronavirus RaTG13—while similarly structured overall—differ in their stability and affinity for binding ACE2, the receptor that SARS-CoV-2 uses to infect human cells.

The substantial difference in the spike protein of the closest viral relative “tells you that this was not a direct jump from this virus into humans,” says Amesh Adalja, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo