Spoiler Alert

How to store microbiome samples without losing or altering diversity

Written byWudan Yan
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

© BRYAN SATALINOIn the last decade or so, researchers have spent billions of dollars categorizing the microbes that populate sites as disparate as the human body, soil, and the oceans. Much of what we know about these different microbiomes has been determined using increasingly sophisticated next-generation sequencing technologies. For instance, scientists typically gauge a sample’s microbial diversity by performing high-throughput sequencing on the gene coding for 16S rRNA, a component of the small subunit of bacterial ribosomes. Shotgun metagenomics is a complementary technique used for microbiome studies when a researcher aims to sample all the genes in all organisms in a sample. These DNA sequencing technologies are quite sensitive, and can pick up fine-scale changes caused by contamination or by the hazards of sample processing.

Because variations in handling and storage of samples can impact a study’s results, maintaining the integrity of samples collected in the field is a major challenge in microbiome research. Vanessa Hale, a microbial ecologist and postdoctoral fellow at the Mayo Clinic in Rochester, Minnesota, says the gold-standard procedure is to extract DNA or RNA from a fresh sample immediately. When immediate processing is not feasible, it’s best to store samples at −80 °C. The microbial composition of a fecal sample starts to shift after one to two days at room temperature (PLOS ONE, 7:e4695, 2012; Open Microbiol J, 3:40-46, 2009); other samples, such as soils, are similarly temperature-sensitive. However, having access to an ultra-low-temperature freezer may not always be possible. Study subjects may collect fecal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research