Strange DNA Structures Linked to Cancer

A study reveals a connection between the loss of enzymes responsible for removing methyl groups from DNA, nucleic acid knots, and cancer development in mice.

Headshot of Sophie Fessl
| 3 min read
chemical visualization of a G-quadruplex

Parallel G-quadruplexes

WIKIMEDIA COMMONS, Thomas Splettstoesser

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A loss of TET enzymes, which demethylate DNA, may cause cancer. In TET deficient mice, DNA forms strange structures called G-quadruplexes (G4s) and R-loops that may drive cancer development, a December 22 study in Nature Immunology suggests.

The paper “is a great contribution to the field of G4/R-loop biology,” Giovanni Capranico, a molecular biologist at the University of Bologna who was not involved in the study, writes in an email to The Scientist. “The major advance is the strong and convincing evidence that TET gene deletions cause a B cell malignancy, at least in mice, [which is] associated with . . . G4s and R-loops,” he says. Non-canonical nucleic acid structures were noticed to be increased in cancer cells already, but this paper has established a better-defined connection.”

Anjana Rao, a cellular and molecular biologist at the La Jolla Institute for Immunology, and her team first described the role of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl, PhD

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit