Stress-Response Compound Widespread in Animals Is Found in Plants

TMAO appears to both stabilize other plant proteins and influence the expression of stress-response genes, researchers report.

| 4 min read
two tomato plants in pots viewed from the top, one scraggly with yellow leaves and one healthier-looking

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Tomato plants watered with a high-salt solution. The water of the plant on the right was supplemented with TMAO, while that of the plant on the left was not.
RAFAEL CATALÁ

A molecule made famous by its association with human heart disease and marine animals’ ability to survive high-pressure conditions turns out to be made by plants too, researchers report this week (May 19) in Science Advances. As it does in animals, trimethylamine N-oxide (TMAO) helps plants cope with stressful conditions, according to the study. The authors have already licensed the discovery to a company that is working to commercialize TMAO as a way to boost yields in agriculture.

“Nobody has published before that plants have TMAO in the tissues,” says study coauthor Rafael Catalá of the Centro de Investigaciones Biológicas (CIB) Margarita Salas in Madrid.

The new study grew out of earlier work in which Catalá and his colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide