Stress-Response Compound Widespread in Animals Is Found in Plants

TMAO appears to both stabilize other plant proteins and influence the expression of stress-response genes, researchers report.

| 4 min read
two tomato plants in pots viewed from the top, one scraggly with yellow leaves and one healthier-looking

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Tomato plants watered with a high-salt solution. The water of the plant on the right was supplemented with TMAO, while that of the plant on the left was not.
RAFAEL CATALÁ

A molecule made famous by its association with human heart disease and marine animals’ ability to survive high-pressure conditions turns out to be made by plants too, researchers report this week (May 19) in Science Advances. As it does in animals, trimethylamine N-oxide (TMAO) helps plants cope with stressful conditions, according to the study. The authors have already licensed the discovery to a company that is working to commercialize TMAO as a way to boost yields in agriculture.

“Nobody has published before that plants have TMAO in the tissues,” says study coauthor Rafael Catalá of the Centro de Investigaciones Biológicas (CIB) Margarita Salas in Madrid.

The new study grew out of earlier work in which Catalá and his colleagues ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours