Study Explains How Newborn Mice Can Regrow Damaged Hearts

The extracellular matrix appears to inhibit regeneration; but scientists debate whether heart muscle really comes back.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

After apical tip resection, the heart from a two-day-old mouse (left) forms scars (white patches), while the heart from a one-day-old mouse (right) regenerates.MARIO NOTARI, CMRBNewborn mice are able to repair damaged heart tissue better than animals injured just a few days later in their lives. What accounts for this regenerative capacity, and exactly when and why it disappears, have been unanswered questions. A report in Science Advances today (May 2) posits that the extracellular matrix gets in the way of heart tissue renewal.

The investigators also found that scarring was minimal in mice injured on their first day of life, but damage occurring after that, even just a day later, led to large fibrotic scars. “I thought this was an intriguing paper that was well done,” says stem cell and regeneration biologist Richard Lee of Harvard University who was not involved with the work. “It pinpoints the timeline [of neonatal heart regeneration] in a manner that’s more precise than what others have done.”

That result is important and really relevant to human disease.—Joshua Hare,
University of Miama Miller School of Medicine

Other scientists are skeptical that what the researchers observed is true regeneration. Clinical biochemist Ditte Andersen of the University of Southern Denmark who has removed small portions ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH