Taking Shape

The causes of a cell’s three-dimensional structure remain a fundamental mystery of cell biology.

Written byWallace F. Marshall
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

CELLULAR DIVERSITY: Cells of different tissues and organisms exhibit an array of dramatically different shapes and sizes. Here, clockwise from top left: retinal rods and cones, stacked red blood cells, Purkinje cells in the cerebellum, sensory hair cells in ear, the unicellular protist Stentor coeruleus, and the corneal endothelium.

When we first learn about cells in grade school, we’re told to imagine them as “blobs.” And indeed, some cells really are blob-shaped, perhaps most famously the amoebas that ooze across the bottom of a pond engulfing smaller organisms. Most of the tissue culture cells that serve as workhorses for cell biology research, such as HeLa cells, are also pretty bloblike. But if we stop looking at cells grown in a dish and start examining those found inside the human body, we are immediately struck by the wide range of beautiful and intricate shapes.

Cell interiors are also full of three-dimensional geometric complexity. Cells aren’t just watery bags of enzymes, but rather are compartmentalized into a large number of organelles, each of which carries out ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH