Targeting Protein Domains with CRISPR

Researchers use the genome-editing tool to mutate binding pockets and identify potential anti-cancer drug targets.

Written byJenny Rood
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, CHAOS

Using the CRISPR/Cas9 genome-editing system to mutate the gene regions encoding particular protein domains could result in a new and more efficient method to screen for druggable protein targets critical to the survival of cancer cells, according to a study published this week (May 11) in Nature Biotechnology.

Current CRISPR-based screens often mutate the beginning of a gene, which sometimes results in the expression of a functional protein variant. To circumvent this problem, researchers at Cold Spring Harbor Laboratory (CSHL) designed CRISPR guide RNAs that would mutate the portion of a gene encoding a domain on the surface of the protein where a small molecule could bind to alter the protein’s function. The team had previously identified such a binding pocket on the protein BRD4, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo