Technical Bias Widespread in RNA-Seq Datasets

Genes that are exceptionally long or short are overrepresented in some published reports, which can lead to misinterpreted results.

Written byDiana Kwon
| 3 min read
rna-seq rna sequencing bias dataset transcript

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, SHUOSHU

RNA sequencing is a popular tool among molecular biologists, because it allows them to examine gene expression patterns in DNA. However, the technique is susceptible to experimental artifacts, which can lead to misinterpreted findings. According to a study published last week (November 12) in PLOS Biology, one such bias, which is associated with gene length, is widespread in many published datasets.

Rani Elkon, a bioinformatician at Tel Aviv University in Israel, says that his team was analyzing RNA sequencing (RNA-seq) datasets for a project aimed at infering the co-regulation of genes by examining their co-expression across many different biological conditions when they stumbled upon a puzzling finding: Genes coding for proteins in the ribosome or other translation-related machinery—which are exceptionally short—and genes coding for extracellular matrix proteins such as collagen—which are exceptionally long—kept popping up in their analyses. “In many different datasets, genes that were upregulated ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies