Technique Rapidly Generates Monoclonal Antibodies In Vitro

A new method stimulates B cells to make human antigen-specific antibodies, obviating the need for vaccinating blood donors or hunting for rare B cells.

Written byJosh P. Roberts
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Representative transmission electron microscopy (TEM) image of a B cell stimulated in vitro with CpG/antigen particle, showing endoplasmic reticulum (ER) characteristic of a plasma cell.SANJUAN NANDIN I., DOMART, M-C; COLLINSON, L. From life-saving diagnostics and treatments to essential reagents, it’s hard to overstate the importance of antibodies in the biomedical world. Thus far there’s always been one hitch or another in the goal to rapidly and easily generate highly specific, high-affinity, fully human antibodies at relatively low cost. By a simple tweak to an established protocol, researchers have developed a platform that may bring the field closer to that goal.

In The Journal of Experimental Medicine on July 24, Facundo Batista, associate director of the Ragon Institute, and colleagues describe an in vitro method by which the signal to activate antibody-producing cells is delivered only in the presence of specific antigen—a technique that enables antigen-specific B cells to be enriched more than 1,000-fold in just a few days, without needing to vaccinate the donor or extensively screen cell culture for rare cells.

“There are multiple ways to make or isolate human monoclonal antibodies, but they all have their flaws,” notes Shane Crotty, a professor at the La Jolla Institute for Allergy & Immunology, who was not involved in the study, by email. “Batista has developed a new technique that is independent of previous techniques and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies