Tethering Transposons

Panoramix, a newly identified transcription repressor, takes the bounce out of jumping genes.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Drosophila melanogasterWIKIMEDIA, ANDRÉ KARWATHMost genomes harbor unruly, mobile DNA elements that can cause potentially harmful mutations. Transposons—thought to be related to viruses—can copy themselves and insert randomly around the genome. A paper published today (October 15) in Science provides a greater understanding of how cells shut down these rogue jumping genes. Greg Hannon of the Cancer Research UK Cambridge Institute and his colleagues have identified a protein in fruit flies that appears to halt transposons before they begin to leap.

“This is a mountain of impressive work, a huge amount of data, [the result of which] is that we now understand something about how piRNAs are transcriptionally silencing their targets,” said molecular geneticist Keith Slotkin of Ohio State University who was not involved in the work. “We knew that this was happening, but the mechanism was all question marks and hand-waving.”

Piwi-interacting RNAs, or piRNAs, are short noncoding RNAs that, as their name implies, interact with a protein called Piwi—a highly conserved transposon-suppressing factor. To protect the host against damaging tranposon-induced mutations, Piwi-piRNA complexes both destroy transposon transcripts in the cytoplasm (post-transcriptional silencing) and block transposon transcription in the nucleus (transcriptional silencing). Essentially, the piRNA pathway “mops up the water” and “turns off the spigot,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development