The Energizer

György Hajnóczky uncovers the chemical and physical strategies by which mitochondria communicate and function within a cell.

Written byMegan Scudellari
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

GYÖRGY HAJNÓCZKY
Professor and Director, MitoCare Center
Department of Pathology, Anatomy and Cell Biology Thomas Jefferson University
Philadelphia, Pennsylvania
EDYTA ZIELINSKA, THOMAS JEFFERSON UNIVERSITY
In the 1970s, mitochondria were the darlings of biological research. Everyone and their cousin was plucking the tiny kidney-shaped organelles out of cells and picking them apart, hoping to unlock the secrets of cellular energy production. Then, in 1978, biochemist Peter Mitchell won the Nobel Prize for sorting out how mitochondria produce ATP. Just like that, the frenzy was over. “It was like mitochondria didn’t have anything else to offer,” recalls György Hajnóczky, a biologist at Thomas Jefferson University in Philadelphia. “Few cared about them anymore.”

In the mid-1980s, Hajnóczky was a medical student at Semmelweis University in Budapest, Hungary. He remembers colleagues, working in the lab of a well-respected mitochondria researcher, desperately seeking jobs in other areas of biology. But Hajnóczky still had questions about mitochondria, and after graduation and a move to the United States, he spearheaded an effort to visualize and track mitochondria inside living cells, rather than in isolation, as was the convention. Thanks to his work and that of others, the field experienced a resurgence that has yet to wane.

In his 23-year career, Hajnóczky, with the help of colleagues, has invented numerous microscopy techniques and fluorescent probes. Using these tools, he has described novel mechanisms by which mitochondria interact with each other and other organelles ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH