The Energizer

György Hajnóczky uncovers the chemical and physical strategies by which mitochondria communicate and function within a cell.

Written byMegan Scudellari
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

GYÖRGY HAJNÓCZKY
Professor and Director, MitoCare Center
Department of Pathology, Anatomy and Cell Biology Thomas Jefferson University
Philadelphia, Pennsylvania
EDYTA ZIELINSKA, THOMAS JEFFERSON UNIVERSITY
In the 1970s, mitochondria were the darlings of biological research. Everyone and their cousin was plucking the tiny kidney-shaped organelles out of cells and picking them apart, hoping to unlock the secrets of cellular energy production. Then, in 1978, biochemist Peter Mitchell won the Nobel Prize for sorting out how mitochondria produce ATP. Just like that, the frenzy was over. “It was like mitochondria didn’t have anything else to offer,” recalls György Hajnóczky, a biologist at Thomas Jefferson University in Philadelphia. “Few cared about them anymore.”

In the mid-1980s, Hajnóczky was a medical student at Semmelweis University in Budapest, Hungary. He remembers colleagues, working in the lab of a well-respected mitochondria researcher, desperately seeking jobs in other areas of biology. But Hajnóczky still had questions about mitochondria, and after graduation and a move to the United States, he spearheaded an effort to visualize and track mitochondria inside living cells, rather than in isolation, as was the convention. Thanks to his work and that of others, the field experienced a resurgence that has yet to wane.

In his 23-year career, Hajnóczky, with the help of colleagues, has invented numerous microscopy techniques and fluorescent probes. Using these tools, he has described novel mechanisms by which mitochondria interact with each other and other organelles ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies