The Father of Autoimmunity: A Profile of Noel Rose

By revealing that animals could develop immune responses against their own tissues, the physician-scientist established an entirely new field of science.

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: Courtesy of Noel Rose and JHU

Science is full of ideas that have been proven wrong. Up until the 1950s, one prevailing view among scientists was that the body could not produce antibodies against itself. This concept, known as horror autotoxicus, or the fear of self-toxicity, was coined in the 19th century by Paul Ehrlich, a German physician-scientist who was awarded a Nobel Prize for his contributions to immunology.

Nearly half a century later, horror autotoxicus was overturned by Ernest Witebsky, a protégé of one of Ehrlich’s trainees, with the help of Witebsky’s student, Noel Rose.

When Rose joined Witebsky’s lab at the University at Buffalo in 1951, Witebsky was studying organ-specific antigens—molecules that make different cell types functionally distinct. Witebsky was particularly interested in thyroglobulin, a large protein found exclusively in cells of the thyroid gland, and he gave Rose the task of identifying the properties that made ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.

Published In

June 2020

An Infant's Bounty

Babies amass microbes that can pave the way to a healthy life

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences