The Genetic Strategies of Dealing with High Altitude

Andean highlander genomes possess cardiovascular-related variants, while populations from other regions evolved different solutions to manage the lack of oxygen.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Aymara-speaking people of the Andean Altiplano in Copacabana, on the border of Lake Titicaca in BoliviaWIKIMEDIA, KILOBUGPeople who both travel to and live at high altitudes typically cope with lower oxygen levels by increasing red blood cell production, which can help get more oxygenated blood to organs and tissues. But the increase in red blood cells also makes blood thicker, stickier, and more difficult to pump, putting a strain on the cardiovascular system and leading to health issues, including heart failure and high blood pressure.

Some populations that live at high altitudes, such as Tibetan highlanders, have evolved to limit increases in red blood cell numbers. In contrast, Andeans that live at high altitudes overproduce red blood cells, yet manage to avoid the negative consequences. In a study published today (November 2) in The American Journal of Human Genetics, researchers report the first clues as to how they skirt the risks of extra red blood cells: variants in sequences related to genes that regulate cardiovascular function and heart development.

The authors “look at a specific population that has a unique evolutionary history,” says Tatum Simonson, who did not participate in the work but studies the physiology and genetics of high-altitude adaptation at the University of California, San Diego. “Because of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo