The Right Sort

Using the strongest molecular binding partnership in biology to separate different cell types.

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

INFOGRAPHIC BY GEORGE RETSECK

Isolating specific cell types from a mass of plant or animal tissue is laborious and tricky. To study epigenetic changes and genes that are expressed differently in different cell lineages—such as cancer cells versus normal cells, or the two types of epidermal cells in Arabidopsis roots—typically requires laser capture microdissection (LCM) or fluorescence-activated cell sorting (FACS). LCM uses a laser and a microscope to literally flip individual cells out of a tissue into a container. It’s like playing tiddlywinks, says Elizabeth Dennis at CSIRO in Canberra, Australia, but you have to flip out a thousand individual cells for each experiment. “It’s a real pain,” she says. Like FACS, it also requires expensive equipment.

Roger Deal and Steven Henikoff from the Fred Hutchinson Cancer Research Center ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research