These Organelles Have No Membranes

From making ribosomes to protecting the integrity of the genome, these membraneless compartments play important roles in the cell. Their behavior is rooted in basic physics.

Written byMichael Crabtree and Tim Nott
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

ABOVE: ILLUSTRATION © MARK MAWSON, GETTY IMAGES

It was a simple but insightful experiment. At the turn of the 20th century, American biologist Edmund Wilson squashed starfish eggs under a microscope and watched what happened as cellular material spilled out between two glass coverslips. He noted that the cellular goo contained spherical globules that fused into larger globules—behavior characteristic of liquid droplets suspended in another, chemically distinct liquid. Wilson also observed that only droplets of the same type (which he judged by their color or apparent density) fused upon contact with each other.

These observations led Wilson to conclude that “the living protoplasm” contains numerous liquid droplets that vary in their “chemical nature.”1 Despite having been overlooked for the last century, this has turned out to be a prescient description of the interior of eukaryotic cells.

In addition to membrane-encased organelles—the nucleus, mitochondria, and Golgi apparatus, to name a few—eukaryotic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo