Tool Would Use Tumor Gene Expression to Inform Radiation Dose

In a retrospective analysis, a team found that an algorithm integrating the gene expression of a tumor with the radiation dose a patient received predicted how well the patient responded to the treatment.

alejandra manjarrez
| 4 min read
description/caption: A medical linear accelerator used to deliver radiation therapy

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK, THOMAS HECKER

Radiation is one of the most common treatments for cancer. How patients are dosed depends largely on cancer type, location, and stage, but this decision is mostly based on population studies, even though patients with similar types of cancer often respond differently to the same amount of radiation. Among the multiple efforts to face that challenge, a research team has developed a model—based on the gene expression of a tumor—that predicts the biological effect of a given radiation dose, with the aim of optimizing treatment doses in each patient.

In a study published August 4 in The Lancet Oncology, the team tested whether their model, known as genomic-adjusted radiation dose (GARD), predicted clinical outcome following radiation treatment in cohorts already reported in literature. They found that GARD scores, which aim to forecast tumor responsiveness to treatment, were associated with time to first recurrence and overall ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer