Two-Faced RNAs

The same microRNAs can have opposing roles in cancer.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ANDRZEJ KRAUZEIn the early 2000s, scientists were first starting to appreciate the idea that microRNAs—small, noncoding RNAs that interfere with protein translation—could have something to do with cancer. One clue came from developmental biology, when Frank Slack, then at Yale University, and colleagues found that mutating a microRNA gene called let-7 led to increased cell divisions. Then in 2002, Carlo Croce’s team, then at Thomas Jefferson University in Philadelphia, mapped genetic deletions common in chronic lymphocytic leukemia to two microRNA loci, miR15 and miR16.

Now, a little more than a decade later, “we know that microRNA levels are essentially abnormal in every type of tumor that’s been examined,” says Joshua Mendell, a microRNA researcher at UT Southwestern Medical Center. In some tumors, a microRNA may be overexpressed, while in others it may be missing altogether.

Some experimental studies have also shown that manipulating a microRNA associated with a cancer—say, deleting one that’s overexpressed or boosting one that’s in low abundance—can knock back tumors. Such is the case with miR15 and miR16, for instance. After Croce and colleagues found that these genetic loci are missing or downregulated in more than half of B-cell chronic lymphocytic leukemias (CLL), another group demonstrated that experimentally deleting this region in mice causes symptoms similar ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH