Two Studies Question Function of Bone Hormone Osteocalcin

Independently produced knockout mouse strains fail to find evidence of the bone protein’s endocrine functions, and divide researchers’ opinions.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Osteoblasts
FLICKR, GIREESH REDDY

Experiments in mice and observations in humans have suggested the bone protein osteocalcin acts as a hormone regulating, among other things, metabolism, fertility, exercise capacity and acute stress. That interpretation is now partially in doubt. Two independent papers published yesterday (May 28) in PLOS Genetics, each of which presents a new osteocalcin knockout mouse strain, report that glucose metabolism and fertility were unaffected in the animals. While some researchers praise the studies, others highlight weaknesses.

“I thought they were very good papers. I think the authors should be congratulated for very comprehensive studies of both skeletal and extraskeletal functions of osteocalcin,” says emeritus bone researcher Caren Gundberg of Yale School of Medicine who was not involved in the research.

Skeletal biologist Gerard Karsenty of Columbia University disagrees. “There have been 25 laboratories in the world . . . that have shown osteocalcin is a hormone,” says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo