Unknown Protein Structures Predicted

Metagenomic sequence data boosts the power of protein modeling software to yield hundreds of new protein structure predictions.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

S. OCHINNIKOV ET AL, SCIENCE 2017DNA sequence data collected from assorted environments has helped researchers generate 3-D models of more than 600 protein families for which the structures were previously unknown, according to a paper published in Science today (January 19). The metagenomic data enabled protein sequence comparisons across an array of species, which lent a statistical power to the predictions that would otherwise not have been possible.

“The big take-home message is that it is now possible to use computational methods to get very good models of protein structures,” said protein biochemist David Eisenberg of the University of California, Los Angeles, who was not involved in the study. “That’s a big deal because [the authors] were able to get models for many more proteins than was possible even a few years ago”

Importantly, added computational biologist Johannes Söding of the Max Planck Institute for Biophysical Chemistry in Munich, Germany, who also did not participate in the research, the “method does not need any experimental data,” such as that obtained by X-ray crystallography or nuclear magnetic resonance imaging—classical techniques for revealing a protein’s structure.

Until recently, Söding explained, biologists would predict the structures ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo