Vector-Based Vaccines Come to the Fore in the COVID-19 Pandemic

Adenovirus vectors deliver the genetic instructions for SARS-CoV-2 antigens directly into patients’ cells, provoking a robust immune response. But will pre-existing immunity from common colds take them down?

anthony king
| 6 min read
adenovirus vector vaccine covid-19 pandemic coronavirus sars-cov-2 spike protein

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: Colored transmission electron microscopic image of adenovirus virions
CDC /DR. G. WILLIAM GARY, JR.

Six vaccine candidates in clinical trials for COVID-19 employ viruses to deliver genetic cargo that, once inside our cells, instructs them to make SARS-CoV-2 protein. This stimulates an immune response that ideally would protect recipients from future encounters with the actual virus. Three candidates rely on weakened human adenoviruses to deliver the recipe for the spike protein of the pandemic coronavirus, while two use primate adenoviruses and one uses measles virus.

Most viral vaccines are based on attenuated or inactivated viruses. An upside of using vectored vaccines is that they are easy and relatively cheap to make. The adenovirus vector, for example, can be grown up in cells and used for various vaccines. Once you make a viral vector, it is the same for all vaccines, says Florian Krammer, a vaccinologist at the Icahn School of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • anthony king

    Anthony King

    Anthony King is a freelance science journalist based in Dublin, Ireland, who contributes to The Scientist. He reports on a variety of topics in chemical and biological sciences, as well as science policy and health. His articles have appeared in Nature, Science, Cell, Chemistry World, New Scientist, the Irish Times, EMBO Reports, Chemistry & Industry, and more. He is President of the Irish Science & Technology Journalists Association. 

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb