Visualizing the Ocular Microbiome

Researchers are beginning to study in depth the largely uncharted territory of the eye’s microbial composition.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, SAM BALDWhen researchers started using modern molecular diagnostic tools such as PCR and genome sequencing to study the microbes living on and in the human body, they found much more complex ecosystems than previous generations had imagined. The Human Microbiome Project undertook a massive effort to characterize microbial communities from five sites—the gut, mouth, nose, skin, and urogenital tract. But they did not include many areas of the body that harbor microbial life, including the surface of the eye.

Ophthalmologists have treated pathogenic eye infections for many decades, and the advent of contact lenses has made such infections more common. But little is known about the bacteria that live on the surface of a healthy human eye, and how this microbial make-up differs when a pathogenic strain takes over. Many bacteria known to live on the eye are difficult to culture, making them virtually invisible to researchers. Adapting sequencing technologies to study the ocular microbiome has opened up new avenues for understanding what’s really happening under the eyelids. About five years ago, Valery Shestopalov of the Bascom Palmer Eye Institute at the University of Miami was speaking with his microbiology colleagues about what bacteria are found on normal, healthy eyes. Conventional wisdom at that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Rina Shaikh-Lesko

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo