Visualizing the Ocular Microbiome

Researchers are beginning to study in depth the largely uncharted territory of the eye’s microbial composition.

Written byRina Shaikh-Lesko
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, SAM BALDWhen researchers started using modern molecular diagnostic tools such as PCR and genome sequencing to study the microbes living on and in the human body, they found much more complex ecosystems than previous generations had imagined. The Human Microbiome Project undertook a massive effort to characterize microbial communities from five sites—the gut, mouth, nose, skin, and urogenital tract. But they did not include many areas of the body that harbor microbial life, including the surface of the eye.

Ophthalmologists have treated pathogenic eye infections for many decades, and the advent of contact lenses has made such infections more common. But little is known about the bacteria that live on the surface of a healthy human eye, and how this microbial make-up differs when a pathogenic strain takes over. Many bacteria known to live on the eye are difficult to culture, making them virtually invisible to researchers. Adapting sequencing technologies to study the ocular microbiome has opened up new avenues for understanding what’s really happening under the eyelids. About five years ago, Valery Shestopalov of the Bascom Palmer Eye Institute at the University of Miami was speaking with his microbiology colleagues about what bacteria are found on normal, healthy eyes. Conventional wisdom at that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH