© PAUL SIMCOCKAs a graduate student studying cell biology at the University of California, San Francisco, Vlad Denic was not interested in projects suggested by his mentor that were sure to result in a publication. Instead, he devised his own experiments, screening for genes involved in sphingolipid metabolism, among other research pursuits. After seven years, Denic pulled together a manuscript on a lipid-synthesizing enzyme only to have it rejected by Cell for lacking general interest. He submitted a different manuscript, this one on an artificial lipid-synthesis technique, to Science a year later and was rejected again, this time on the grounds that his findings were not novel enough.
“I’m okay with failure,” Denic says now. “As long as it prompts me to come up with something new.” His persistence paid off during an experiment with the enzymes that help produce very long fatty acid chains, important cellular building blocks. Denic observed that by adjusting the position of one amino acid, he could control the size of the chain, a mechanism he called a “molecular caliper.”1 The finding earned him a publication in Cell and drew his eight years of grad school to a close.
During those years, Denic built a reputation for inventive experimentation that helped him immediately land a faculty position at Harvard University in 2008. Initially, his lab focused on tail-anchored (TA) proteins, a broad and vital class of membrane-bound molecules ...