Vlad Denic on Exploring New Fields and Failing Successfully

The Harvard professor is pursuing fundamental questions about autophagy, protein homeostasis, and other cellular processes, and he’s always on the lookout for his next new topic.

Written byBen Andrew Henry
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© PAUL SIMCOCKAs a graduate student studying cell biology at the University of California, San Francisco, Vlad Denic was not interested in projects suggested by his mentor that were sure to result in a publication. Instead, he devised his own experiments, screening for genes involved in sphingolipid metabolism, among other research pursuits. After seven years, Denic pulled together a manuscript on a lipid-synthesizing enzyme only to have it rejected by Cell for lacking general interest. He submitted a different manuscript, this one on an artificial lipid-synthesis technique, to Science a year later and was rejected again, this time on the grounds that his findings were not novel enough.

“I’m okay with failure,” Denic says now. “As long as it prompts me to come up with something new.” His persistence paid off during an experiment with the enzymes that help produce very long fatty acid chains, important cellular building blocks. Denic observed that by adjusting the position of one amino acid, he could control the size of the chain, a mechanism he called a “molecular caliper.”1 The finding earned him a publication in Cell and drew his eight years of grad school to a close.

During those years, Denic built a reputation for inventive experimentation that helped him immediately land a faculty position at Harvard University in 2008. Initially, his lab focused on tail-anchored (TA) proteins, a broad and vital class of membrane-bound molecules ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform