Weak Magnetic Fields Manipulate Regeneration in Worms

At magnetic field intensities somewhat above that of Earth, stem cell proliferation shifts gears.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A Schmidtea mediterranea planarian flatworm.
COURTESY OF ALANNA VAN HUIZEN, WESTERN MICHIGAN UNIVERSITY

Exposure to weak magnetic fields can, depending on their strength, either slow or boost flatworm regeneration, according to a report in Science Advances today (January 30). The study provides evidence for a possible mechanism, showing that magnetic fields affect the production of reactive oxygen species, which in turn alter cell behavior.

“It’s a very nice paper because they are really trying to dig down into the effects of [magnetic fields],” says biophysicist Thorsten Ritz of the University of California, Irvine, who was not involved in the study. “They are not just adding to the zoo of effects that have been seen [before].”

Furthermore, “it provides the prospect that a weak magnetic field could be employed as a therapeutic tool to non-invasively regulate tissue formation,” says Daniel Kattnig, a biophysicist at the University of Exeter in the UK ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo