Weak Magnetic Fields Manipulate Regeneration in Worms

At magnetic field intensities somewhat above that of Earth, stem cell proliferation shifts gears.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: A Schmidtea mediterranea planarian flatworm.
COURTESY OF ALANNA VAN HUIZEN, WESTERN MICHIGAN UNIVERSITY

Exposure to weak magnetic fields can, depending on their strength, either slow or boost flatworm regeneration, according to a report in Science Advances today (January 30). The study provides evidence for a possible mechanism, showing that magnetic fields affect the production of reactive oxygen species, which in turn alter cell behavior.

“It’s a very nice paper because they are really trying to dig down into the effects of [magnetic fields],” says biophysicist Thorsten Ritz of the University of California, Irvine, who was not involved in the study. “They are not just adding to the zoo of effects that have been seen [before].”

Furthermore, “it provides the prospect that a weak magnetic field could be employed as a therapeutic tool to non-invasively regulate tissue formation,” says Daniel Kattnig, a biophysicist at the University of Exeter in the UK ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH