What Causes Type 2 Diabetes?

Insulin resistance and high levels of insulin and lipids all precede the development of metabolic dysfunction. Which metabolic factor is to blame?

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

FAT TRIANGLE: Fat cells (left) release lipids into the bloodstream. High lipid levels, in turn, can trigger the release of insulin from pancreatic β cells (middle). Insulin then travels to cells of the liver (right) and to the body’s periphery. Understanding the cause of metabolic dysfunction and diabetes will require a detailed understanding of how these different tissues and organs work together to regulate blood sugar.DANIELA MALIDE, NATIONAL HEART, LUNG, AND BLOOD INSTITUTE; NIH; © SCOTT CAMAZINE/SCIENCE SOURCE; © ISTOCK.COM/MAXPDIA

Type 2 diabetes is a multifactorial metabolic disease.1 Obesity, elevated levels of lipids and insulin in the blood, and insulin resistance all accompany the elevated blood glucose that defines diabetes. (Diabetes is defined as fasting blood glucose concentrations above 7 millimolar (mM), or above 11 mM two hours after ingestion of 75 grams of glucose.) But while researchers have made much progress in understanding these components of the metabolic dysfunction, one major question remains: What serves as the primary driver of disease?

Lifestyle choices characterized by inactivity have been postulated as one possible cause. Researchers have also pointed the finger at nutrition, postulating that poor food choices can contribute to metabolic disease. However, there is thus far weak support for these hypotheses. Changing to a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Barbara E. Corkey

    This person does not yet have a bio.

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome