Wrestling with Recurrent Infections

Clostridium difficile is evolving more robust toxicity, repeatedly attacking its victims, and driving the search for alternative therapies to fight the infection.

Written byGayatri Vedantam and Glenn S. Tillotson
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

SEAN MCCABE

As infectious bacteria go, Clostridium difficile may be one of the most vexing for researchers, clinicians, and patients alike. It spreads from person to person by ingestion of the bacterium’s spores, which can not only remain viable for long periods of time outside of a human host, but can withstand most common disinfectants. Within the body, the spores can survive the acidity of the stomach, germinating in the intestines where the bacteria release toxins that wreak havoc on the bowel, causing severe abdominal pain and diarrhea. And while the proper regime of antibiotics usually eliminates the infection, residual spores can remain, and the bacteria can reemerge with a vengeance weeks or months later.

Recent estimates suggest that C. difficile infections (CDI) are on the rise, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH