X Marks the Sex-Skewed Spot

Alterations in epigenetic markers on the X chromosome may be why males outnumber females among murine offspring bred through in vitro fertilization.

Written byRina Shaikh-Lesko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Intracytoplasmic sperm injection of a human oocyteWIKIMEDIA, EUGENE ERMOLOVICHOffspring conceived by in vitro fertilization (IVF) are more likely to be male than female. Now, a team led by Jianhui Tian of China Agricultural University in Beijing has found that problems with X chromosome inactivation, the process of silencing one of the female embryo’s X chromosomes, is responsible for much of this sex-ratio skew in mice. The team also demonstrated a method of reversing the male-dominant ratio by modifying the culture that murine preimplantation IVF embryos are grown in. The team’s results were published in PNAS today (March 7).

Paulo Rinaudo, a reproductive endocrinologist with the University of California, San Francisco, who was not involved in the study, noted that researchers previously suspected X chromosome inactivation played some role in this phenomenon. “The authors did a great job in going after a mechanism,” Rinaoudo wrote in an email.

In the U.S., around 1.5 percent of newborns are conceived via IVF. Elsewhere, the rate of IVF-conceived babies is as high as 4 percent. The assisted reproductive technology is also extensively used in cow, pig, and other livestock breeding programs, where researchers began documenting the skew toward male offspring in the early 1990s. In the past decade, a similar sex ratio has been found among human IVF embryos, but supporting evidence for the imbalance was inconsistent.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH