A New Way to Establish Cause and Effect in Epidemiology?

A technique called Mendelian randomization is overturning the conclusions of observational studies in public health. But researchers question whether the method can overcome its fundamental limitations.

Written byRachael Moeller Gorman
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: © ISTOCK.COM, ARTHOBBIT

At the turn of the 21st century, University of Bristol epidemiologist George Davey Smith was growing dissatisfied with his field. “I’ve been working in epidemiology for a very long time,” he says. “And I was disillusioned with the conventional approaches to try to establish cause and effect in observational epidemiology.”

Confounding factors plague observational studies, which examine populations of people to identify correlations between environmental conditions or lifestyle factors and disease and therefore cannot draw conclusions about a disease’s cause. Highlighting the approach’s limitations is the fact that randomized controlled trials, widely considered the gold standard for medical evidence, have failed to confirm many observational results or translate them into interventions. Observational epidemiological studies, Davey Smith says, were “obviously getting things wrong.”

So in 2003, he wrote a paper that outlined how to reframe an observational study as a natural experiment by incorporating a dash of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After earning a bachelor’s degree in biology and neuroscience from Williams College, Rachael spent two years studying the tiny C. elegans worm as a lab tech at Massachusetts General Hospital/Harvard University. She then returned to school to get a master’s degree in environmental studies from Brown University, and subsequently worked as an intern at Scientific AmericanDiscover magazine, and the Annals of Improbable Research, the originators of the yearly Ig Nobel prizes. She now freelances for both scientific and lay publications, and loves telling the stories behind the science. Find her at rachaelgorman.com or on Instagram @rachaelmoellergorman.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH