Abundant Neurogenesis Found in Adult Humans’ Hippocampi

Researchers identified thousands of immature neurons in the brain region, countering a recent result showing little, if any, signs of neurogenesis.

Written byAshley Yeager
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A comparison of stained neural progenitors (pink) in a young (left) and old (right) brainCOURTESY OF MAURA BOLDRINIAdult human hippocampi are home to thousands of immature neurons, researchers report today (April 5) in Cell Stem Cell. The result runs counter to a paper published last month in Nature that found no evidence of neural precursor cells or immature neurons in adults. Such contradictory findings raise questions about researchers’ understanding of neurogenesis in human adult hippocampi, which are central to learning and memory.

“There’s been a long-standing debate about adult human neurogenesis,” Xinyu Zhao, a neurobiologist at the University of Wisconsin-Madison who was not involved in either study, tells The Scientist. She says the latest work in Cell Stem Cell is notable because it uses stereology—the gold standard of neurogenesis studies in animals—to count immature and mature neurons in the hippocampi of healthy humans. Stereology can determine the number of individual cell types in tissue, even when the sample has been sliced into sections.

“I have never seen anybody do this in human tissue because availability of human tissue is a major problem,” Zhao says. “The fact they did this counting on the whole hippocampal tissue is remarkable.”

We dispute the interpretation of their cellular staining experiments as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH