Abundant Sequence Errors in Public Databases

A new algorithm reveals hoards of preparation-induced DNA mutations in publicly available human sequences.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, SAURI NASHSome sequence variants found in DNA specimens may actually be caused by damage during sample processing, according to a paper in Science today (February 16). A team of researchers at New England Biolabs (NEB) has devised an algorithm for assessing the degree of such damage, and suggests that using DNA repair enzymes during sample preparation might rectify the problem.

“The work demonstrates how to distinguish somatic variants from those due to DNA preparation damage,” Stanford University’s Stephen Montgomery, who was not involved with the work, wrote in an email to The Scientist. “The benefits of this [include] reduced false positives . . . in discovery-based cancer genome projects,” he added.

It is well known that DNA samples extracted from ancient specimens or from formalin-fixed, paraffin-embedded tissues are prone to fragmentation and chemical modification, which can produce mutations that did not exist in the living organism. But recent evidence suggests that, in fact, any DNA sample may be at risk of such artificial mutagenic damage. DNA sonication—the use of sound energy to agitate the DNA fragments in preparation for amplification and sequencing—is known to induce ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research