Abundant Sequence Errors in Public Databases

A new algorithm reveals hoards of preparation-induced DNA mutations in publicly available human sequences.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, SAURI NASHSome sequence variants found in DNA specimens may actually be caused by damage during sample processing, according to a paper in Science today (February 16). A team of researchers at New England Biolabs (NEB) has devised an algorithm for assessing the degree of such damage, and suggests that using DNA repair enzymes during sample preparation might rectify the problem.

“The work demonstrates how to distinguish somatic variants from those due to DNA preparation damage,” Stanford University’s Stephen Montgomery, who was not involved with the work, wrote in an email to The Scientist. “The benefits of this [include] reduced false positives . . . in discovery-based cancer genome projects,” he added.

It is well known that DNA samples extracted from ancient specimens or from formalin-fixed, paraffin-embedded tissues are prone to fragmentation and chemical modification, which can produce mutations that did not exist in the living organism. But recent evidence suggests that, in fact, any DNA sample may be at risk of such artificial mutagenic damage. DNA sonication—the use of sound energy to agitate the DNA fragments in preparation for amplification and sequencing—is known to induce ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control