Alzheimer’s-Linked Mutation Causes Blockages in Neurons

The variant causes a buildup of BACE1 protein in axons in cultured neurons and mice. Researchers say it might be time to rethink failed trials that inhibit BACE1 to treat the neurodegenerative disease.

Written byIan Le Guillou
| 3 min read
bace1 alzheimer's disease gga3 axon neuron

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The ongoing search for effective treatments for Alzheimer’s disease has focused on aggregates of amyloid-β peptides, which are the hallmark of the disease. However, efforts to inhibit one of the proteins responsible for producing amyloid-β, called BACE1, have led to several failed Phase 3 clinical trials.

But researchers aren’t giving up hope. A study published in Science Translational Medicine on November 18 reveals how variants in a gene called GGA3—which are a known risk factor for developing Alzheimer’s—alter BACE1 movement through brain cells in culture and in mice. This causes the buildup of BACE1 protein and creates axonal damage similar to that seen in the pre-symptomatic stages of Alzheimer’s disease. This could mean BACE1 inhibitors still have promise as a treatment if used much earlier in the disease process.

“I think the core message from this paper is that this could be one additional primary pathogenic development that precedes amyloid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ian le guillou

    Ian is a freelance journalist based in Paris, covering health and biomedical research. After hanging up his lab coat in 2012, Ian worked for several years in communications for medical research charities in the UK before going freelance.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies