Alzheimer’s-Linked Mutation Causes Blockages in Neurons

The variant causes a buildup of BACE1 protein in axons in cultured neurons and mice. Researchers say it might be time to rethink failed trials that inhibit BACE1 to treat the neurodegenerative disease.

Written byIan Le Guillou
| 3 min read
bace1 alzheimer's disease gga3 axon neuron

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The ongoing search for effective treatments for Alzheimer’s disease has focused on aggregates of amyloid-β peptides, which are the hallmark of the disease. However, efforts to inhibit one of the proteins responsible for producing amyloid-β, called BACE1, have led to several failed Phase 3 clinical trials.

But researchers aren’t giving up hope. A study published in Science Translational Medicine on November 18 reveals how variants in a gene called GGA3—which are a known risk factor for developing Alzheimer’s—alter BACE1 movement through brain cells in culture and in mice. This causes the buildup of BACE1 protein and creates axonal damage similar to that seen in the pre-symptomatic stages of Alzheimer’s disease. This could mean BACE1 inhibitors still have promise as a treatment if used much earlier in the disease process.

“I think the core message from this paper is that this could be one additional primary pathogenic development that precedes amyloid ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ian le guillou

    Ian is a freelance journalist based in Paris, covering health and biomedical research. After hanging up his lab coat in 2012, Ian worked for several years in communications for medical research charities in the UK before going freelance.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH