Anti-CRISPR Protein Reduces Off-Target Effects

AcrIIA4, an inhibitor protein from the Listeria bacteriophage, can block DNA from binding to Cas9 during genome editing.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SHIN ET AL., SCIENCE ADVANCES Last December, two groups of scientists published their discoveries of several proteins that could block CRISPR-Cas9 activity. In a study published today (July 12) in Science Advances, researchers have now used one of those anti-CRISPR agents to reduce off-target effects in Cas9-mediated genome editing in human cells.

“CRISPRs have been recognized as bacterial immune systems for some time, and of course, one of the pretty common themes in biology is that if something develops a weapon, the target is going to develop a defense,” says study coauthor Jacob Corn, a professor of biochemistry and biophysics at the University of California, Berkeley. “It turns out that . . . the phages have evolved ways to fight off the CRISPR systems, and that’s these anti-CRISPR proteins.”

To study the mechanism behind one of these anti-CRISPR proteins, AcrIIA4, which was co-discovered by Corn’s collaborator, Joseph Bondy-Demony, a biologist at the University of California, San Francisco, the team used a variety of methods, including cryo-electron microscopy and human cell culture experiments.

Through a multi-lab effort, researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo