Archaea Family Tree Blossoms, Thanks to Genomics

Identification of new archaea species elucidates the domain’s unique  biology and sheds light on its relationship to eukaryotes.

Written byAmber Dance
| 15 min read

Register for free to listen to this article
Listen with Speechify
0:00
15:00
Share

Every summer from 2013 to 2015, Dimitry Sorokin waded into the shallow, briny, alkaline lakes of Siberia’s Kulunda Steppe. Pale carbonate minerals crusted the pools’ edges, where lambs, too young to know the perils of drinking here, sometimes perished on the shores. As the water lapped at his thighs and abdomen, the stink of sulfur, which bubbled up along with methane from the disturbed sediments, filled his nostrils. “For me, it’s Chanel No. 5,” says the microbiologist, who splits his time between the Russian Academy of Sciences in Moscow and Delft University of Technology in the Netherlands.

Sorokin was hoping to identify the microbes producing that methane. From his previous research, Sorokin knew that the lakes’ denizens contained a gene for part of the methane-processing methyl-coenzyme M reductase (MCR) complex, but he didn’t know which microbial species harbored the gene in their chromosomes.1 He collected mud from the pools’ bottoms ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control