Archaea Family Tree Blossoms, Thanks to Genomics

Identification of new archaea species elucidates the domain’s unique  biology and sheds light on its relationship to eukaryotes.

| 15 min read

Register for free to listen to this article
Listen with Speechify
0:00
15:00
Share

Every summer from 2013 to 2015, Dimitry Sorokin waded into the shallow, briny, alkaline lakes of Siberia’s Kulunda Steppe. Pale carbonate minerals crusted the pools’ edges, where lambs, too young to know the perils of drinking here, sometimes perished on the shores. As the water lapped at his thighs and abdomen, the stink of sulfur, which bubbled up along with methane from the disturbed sediments, filled his nostrils. “For me, it’s Chanel No. 5,” says the microbiologist, who splits his time between the Russian Academy of Sciences in Moscow and Delft University of Technology in the Netherlands.

Sorokin was hoping to identify the microbes producing that methane. From his previous research, Sorokin knew that the lakes’ denizens contained a gene for part of the methane-processing methyl-coenzyme M reductase (MCR) complex, but he didn’t know which microbial species harbored the gene in their chromosomes.1 He collected mud from the pools’ bottoms ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amber Dance

    Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo