Booster Is Best in the Same Limb as Initial Vaccine: Mouse Study

Compared to mice who got the doses in separate limbs, animals receiving flu shots in the same paw for both a first and second dose had better-trained memory B cells that bound tighter to the vaccine antigen.

Written byAlejandra Manjarrez, PhD
| 4 min read
germinal center inside a lymph node
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Animals receiving flu shots in the same paw for both a first and second dose had better trained memory B cells that bound tighter to the vaccine antigen than did mice who got the doses in separate limbs.

When the adaptive immune system encounters something foreign for the first time—either by infection or vaccination—it trains its army to recognize and fight the invader. Still, repeated exposures to an antigen are often required to optimize this response. And new data suggests that the optimization process can be fine-tuned: booster shots elicited higher quality memory B cells in mice when they were given in the same limb as the original dose, researchers report today (May 6) in Science Immunology.

According to the study authors’ analyses, the higher-quality memory B cells seen after the same-limb booster are direct descendants of memory B cells trained by the first shot that had stuck around in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies