Booster Is Best in the Same Limb as Initial Vaccine: Mouse Study

Compared to mice who got the doses in separate limbs, animals receiving flu shots in the same paw for both a first and second dose had better-trained memory B cells that bound tighter to the vaccine antigen.

Written byAlejandra Manjarrez, PhD
| 4 min read
germinal center inside a lymph node
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Animals receiving flu shots in the same paw for both a first and second dose had better trained memory B cells that bound tighter to the vaccine antigen than did mice who got the doses in separate limbs.

When the adaptive immune system encounters something foreign for the first time—either by infection or vaccination—it trains its army to recognize and fight the invader. Still, repeated exposures to an antigen are often required to optimize this response. And new data suggests that the optimization process can be fine-tuned: booster shots elicited higher quality memory B cells in mice when they were given in the same limb as the original dose, researchers report today (May 6) in Science Immunology.

According to the study authors’ analyses, the higher-quality memory B cells seen after the same-limb booster are direct descendants of memory B cells trained by the first shot that had stuck around in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery