Brain Freeze

A common tissue fixation method distorts the true neuronal landscape.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TIGHT SQUEEZE: Chemical fixation compacts synapses in a mouse brain (left), compared to freezing, which maintains the extracellular space (blue; right).GRAHAM KNOTT The paper
N. Korogod et al., “Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation,” eLife, 4:e05793, 2015.

The fix
Soaking brain tissue with chemical fixatives has been the go-to method of preserving specimens for decades. Yet few neuroscientists take into account the physical distortion that these chemicals cause. And even among those who do pay attention, “we don’t really know in quantitative terms how much really changes,” says Graham Knott, a morphologist at the École Polytechnique Fédérale de Lausanne in Switzerland.

Shrinkage
Comparing fresh to fixed tissue, Knott and his colleagues found that chemical fixation shrank the tissue by 30 percent. “It raises the question of, ‘What on earth is going on if it shrinks that much?’” says Knott. To find out, they turned to an alternative preservation approach, rapid freezing and low-temperature resin embedding, which was shown in the 1960s to better capture the natural state of the brain. Using a high-pressure version of this cryo-fixation technique, they observed neurons swimming in extracellular space and smaller astrocytes than are seen in chemically fixed samples.

Reality
NIH investigator Kevin Briggman says Knott’s technique offers a much more accurate snapshot of the brain. An added bonus is that the elbow room around neurons afforded by cryo fixation makes it easier for automated methods to count cells or analyze structures. The only problem, he adds, is that, in contrast to chemical fixation, “you can’t freeze a whole mouse brain.”

The compromise
Briggman and Knott don’t advocate doing away with fixatives. Rather, Knott says, scientists who use them should consider their effects when interpreting data. “We need to use models that pay very careful attention to how tissue has reacted to chemicals.”

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome