CAR T Cell Adds Scorpion Venom to Tackle Tumor Heterogeneity

A newly engineered CAR T cell that incorporates a peptide isolated from the venom of the deathstalker scorpion has broad brain tumor–binding capabilities that will be investigated in an upcoming clinical trial.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A deathstalker scorpion
© ISTOCK.COM, LASTOVETSKIY

In chimeric antigen receptor T cell therapy, patients’ T cells are genetically engineered to recognize an antigen present on the surface of their tumors and destroy cancer cells. According to a study published on March 4 in Science Translational Medicine, a new CAR that incorporates chlorotoxin, a small peptide derived from scorpion venom, binds to a large proportion of brain tumor cells, despite the vast cellular heterogeneity of these cancers. The authors argue that this novel design could have therapeutic benefits for glioblastoma, an aggressive form of brain cancer that is notoriously difficult to treat, and have already opened a clinical trial to test their intervention.

The study is “of great significance to the CAR T cell immunotherapy field” because it “presents the development and implementation of a potentially ‘universal’ CAR for the treatment of [glioblastoma],” Luis Sanchez-Perez, a neurosurgeon and immunotherapy researcher at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amy Schleunes

    A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio